最近做了HNOI2014 day1和day2的题目,决定学习skydec来一发题解。。。
3571 画框
sol:类似于最小乘积生成树。。,把(Σa,Σb)看做平面上的一个点,易发现答案在所有的点的下凸壳内,由于点比较多,而下凸壳内的点数期望不会很多,于是分治解决。先找到Σa和Σb最小的点。然后找到离这两个点连成的这条直线最远的点。分治解决就行了。。。,计算用KM解决。。。
#include <cstdio> #include <cstring> #include <algorithm> #include <set> #include <map> #define inf 21000000000000ll #define maxn 75 using namespace std; int visx[maxn],visy[maxn]; long long dx[maxn],dy[maxn]; int link[maxn]; long long slack[maxn]; int a[maxn][maxn],b[maxn][maxn]; long long w[maxn][maxn],ans,n,T; struct sol { int a,b; sol(int T=0,int C=0){a=T;b=C;} sol operator -(const sol &e) { return sol(a-e.a,b-e.b); } long long operator *(const sol &e) { return 1ll*a*e.b-1ll*b*e.a; } }; int dfs(int x) { visx[x]=1; for(int i=1;i<=n;i++) { if(visy[i])continue; long long t=dx[x]+dy[i]-w[x][i]; if(t==0) { visy[i]=1; if(link[i]==-1||dfs(link[i])) { link[i]=x; return 1; } }else { if(t<slack[i])slack[i]=t; } } return 0; } inline sol KM() { memset(dy,0,sizeof(dy)); memset(link,-1,sizeof(link)); for(int i=1;i<=n;i++) { dx[i]=-inf; for(int j=1;j<=n;j++) if(w[i][j]>dx[i])dx[i]=w[i][j]; } for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++)slack[j]=inf; while(1) { memset(visx,0,sizeof(visx)); memset(visy,0,sizeof(visy)); if(dfs(i))break; long long d=inf; for(int j=1;j<=n;j++) if(!visy[j]&&slack[j]<d)d=slack[j]; for(int j=1;j<=n;j++) if(visx[j])dx[j]-=d; for(int j=1;j<=n;j++) if(visy[j])dy[j]+=d;else slack[j]-=d; } } int reta=0,retb=0; for(int i=1;i<=n;i++) if(link[i]!=-1) reta+=a[link[i]][i], retb+=b[link[i]][i]; if(1ll*reta*retb<ans)ans=1ll*reta*retb; return sol(reta,retb); } inline void work(sol L,sol R) { int ka=R.a-L.a,kb=R.b-L.b; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) w[i][j]=-1ll*a[i][j]*kb+1ll*b[i][j]*ka; sol p=KM(); if((p-R)*(L-R)<=0)return; work(L,p); work(p,R); } int main() { scanf("%d",&T); while(T--) { ans=inf; scanf("%d",&n); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&a[i][j]); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&b[i][j]); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) w[i][j]=-a[i][j]; sol ulim=KM(); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) w[i][j]=-b[i][j]; sol dlim=KM(); work(dlim,ulim); printf("%lld\n",ans); } }
3572:世界树
sol:学习了一种叫做虚树的高大上的东西。。。虚树就是包含了所有给定点,并收缩了连续的不分叉的边的树的联通子图。在这道题中,我们需要对所有的点构建一颗虚树。至于虚树的构建么,只需要对给出的点按照dfs序的时间戳排序,然后按照笛卡尔树的思想,用单调栈维护树的最右链,并补上需要的lca节点就可以了。
sort(h+1,h+N+1,cmp); for(int i=1;i<=N;i++) { int x=h[i]; if(!top) { stack[++top]=x; Fa[x]=0; continue; } int anc=lca(x,stack[top]); while(top) { if(dep[stack[top]]<=dep[anc])break; if(dep[stack[top-1]]<=dep[anc]) Fa[stack[top]]=anc; top--; } if(stack[top]!=anc) { t[++tot]=anc; Fa[anc]=stack[top]; stack[++top]=anc; g[anc]=mp(inf,0); } Fa[x]=anc; stack[++top]=x; }
然后我们在虚树上做DP。对于虚树上的一个节点维护把这个点控制的点的编号和这个点到它的距离,然后扫描徐虚树上的每一条边并计算边的贡献。如果控制I和他父亲的点相同,那么I和父亲这一段的虚边显然属于哪个把他们控制的点。否则找到断点分别计算贡献即可。
#include <cstdio> #include <cstring> #include <algorithm> #define maxn 300005 #define pii pair<int,int> #define mp make_pair #define inf 2100000000 using namespace std; struct e { int u,v,pre; e(int U=0,int V=0,int P=0){u=U;v=V;pre=P;} }edge[maxn<<1];int dex; int n,adj[maxn],fa[maxn][21],cnt=0; int dep[maxn],sz[maxn],st[maxn]; void dfs(int x) { sz[x]=1;st[x]=(++cnt); for(int i=adj[x];i;i=edge[i].pre) { int v=edge[i].v; if(v==fa[x][0])continue; fa[v][0]=x; for(int j=1;j<=19;j++) fa[v][j]=fa[fa[v][j-1]][j-1]; dep[v]=dep[x]+1; dfs(v); sz[x]+=sz[v]; } } inline int cmp(const int &e,const int &f) { return st[e]<st[f]; } inline int get(int x,int d) { for(int i=19;i+1;i--) if(dep[fa[x][i]]>=d)x=fa[x][i]; return x; } inline int lca(int x,int y) { if(dep[x]<dep[y])swap(x,y); for(int i=19;i+1;i--) if(dep[fa[x][i]]>=dep[y])x=fa[x][i]; if(x==y)return x; for(int i=19;i+1;i--) if(fa[x][i]!=fa[y][i]) { x=fa[x][i]; y=fa[y][i]; } return fa[x][0]; } pii g[maxn]; int N,mem[maxn],val[maxn],w[maxn]; int stack[maxn],top,Fa[maxn],ans[maxn]; int h[maxn],t[maxn],tot=0; inline void work() { tot=0; scanf("%d",&N); for(int i=1;i<=N;i++) { scanf("%d",&h[i]); mem[i]=h[i]; t[++tot]=h[i]; ans[h[i]]=0; g[h[i]]=mp(0,h[i]); }ans[0]=0;top=0; sort(h+1,h+N+1,cmp); for(int i=1;i<=N;i++) { int x=h[i]; if(!top) { stack[++top]=x; Fa[x]=0; continue; } int anc=lca(x,stack[top]); while(top) { if(dep[stack[top]]<=dep[anc])break; if(dep[stack[top-1]]<=dep[anc]) Fa[stack[top]]=anc; top--; } if(stack[top]!=anc) { t[++tot]=anc; Fa[anc]=stack[top]; stack[++top]=anc; g[anc]=mp(inf,0); } Fa[x]=anc; stack[++top]=x; } sort(t+1,t+tot+1,cmp); for(int i=1;i<=tot;i++) { int z=t[i]; val[z]=sz[z]; if(i>1) w[z]=dep[z]-dep[Fa[z]]; } for(int i=tot;i>1;i--) { int x=t[i]; int father=Fa[x]; g[father]=min(g[father],mp(g[x].first+w[x],g[x].second)); } for(int i=2;i<=tot;i++) { int x=t[i],father=Fa[x]; g[x]=min(g[x],mp(g[father].first+w[x],g[father].second)); } for(int i=1;i<=tot;i++) { int x=t[i],father=Fa[x]; if(i==1) { ans[g[x].second]+=n-sz[x]; continue; } int G=get(x,dep[father]+1); int sum=sz[G]-sz[x]; val[father]-=sz[G]; if(g[x].second==g[father].second) { ans[g[x].second]+=sum; continue; } int mid=dep[x]-((g[father].first+g[x].first+w[x])/2-g[x].first); if(!((g[father].first+g[x].first+w[x])&1)&&g[father].second<g[x].second)++mid; int y=sz[get(x,mid)]-sz[x]; ans[g[x].second]+=y; ans[g[father].second]+=sum-y; } for(int i=1;i<=tot;i++)ans[g[t[i]].second]+=val[t[i]]; for(int i=1;i<=N;i++)printf("%d ",ans[mem[i]]); puts(""); } int main() { #ifndef ONLINE_JUDGE freopen("3572.in","r",stdin); freopen("3572.out","w",stdout); #endif scanf("%d",&n); for(int i=1;i<n;i++) { int u,v; scanf("%d%d",&u,&v); edge[++dex]=e(u,v,adj[u]);adj[u]=dex; edge[++dex]=e(v,u,adj[v]);adj[v]=dex; } dep[1]=1; dfs(1); int test; scanf("%d",&test); while(test--) work(); return 0; }
3573:米特运输
sol:语文好题。。。读懂了题目之后发现如果某个点的值被确定,那么整棵树每个点的权值都会被确定。我们只需计算出这个点被确定时根节点的权值应该是多少,排序取众数即可。这个值会很大,需要hash
#include <cstdio> #include <cstring> #include <algorithm> #define mod1 10000000000007ll #define mod2 999999999997ll #define maxn 500006 #define unsigned long long u64 using namespace std; struct e { int u,v,pre; e(int U=0,int V=0,int P=0){u=U;v=V;pre=P;} }edge[maxn]; struct Node { long long x,y; friend bool operator ==(const Node &e,const Node &f) { return (e.x==f.x)&&(e.y==f.y); } friend bool operator <(const Node &e,const Node &f) { return (e.x<f.x)||((e.x==f.x)&&(e.y<f.y)); } }c[maxn]; int adj[maxn],dex=-1,size[maxn]; int w[maxn],n; inline void dfs(int x,long long y,long long z) { c[x].x=1ll*y*w[x]%mod1; c[x].y=1ll*z*w[x]%mod2; long long newy=1ll*y*size[x]%mod1; long long newz=1ll*z*size[x]%mod2; for(int i=adj[x];i!=-1;i=edge[i].pre) { int v=edge[i].v; dfs(v,newy,newz); } } int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&w[i]); memset(adj,-1,sizeof(adj)); for(int i=1;i<n;i++) { int u,v; scanf("%d%d",&u,&v); edge[++dex]=e(u,v,adj[u]); adj[u]=dex; size[u]++; } dfs(1,1ll,1ll); sort(c+1,c+n+1); int ans=2100000000; for(int i=1,k=0;i<=n;i++) { if(c[i]==c[i-1]||i==1)k++;else k=1; if(n-k<ans)ans=n-k; } printf("%d\n",ans); return 0; }
3574 抄卡组
sol:太弱的我果断去膜拜了ydc的题解。发现只要hash就行了。。。
不难发现,如果每个点都有通配符。那么只要判断是否所有的字符串的前后缀相等就行了。如果某个单词没有通配符,那么我只要判断是否所有串都可以和他匹配。现在问题就变成了判断一个没有通配符的串和一个有通配符的串是否相等,这部分可以用hash解决。先进行第一个位置到第一个通配符的匹配和最后一个通配符到最后一个位置的匹配,再把通配符作为分割点把有通配符的串分多次去匹配就行了。。。
#include <cstdio> #include <cstring> #include <algorithm> #define maxE 100005 #define maxn 11000005 #define base 233 using namespace std; typedef unsigned long long ULL; int n,nowlen,com,now; char str[maxn]; int cnt[maxE]; int from[maxE],to[maxE]; ULL sum[maxn],pow[maxn]; int prev[maxE],next[maxE],head,tail; inline int check(char x) { if(x>='0'&&x<='9')return 1; if(x>='a'&&x<='z')return 1; if(x=='*')return 1; return 0; } inline ULL gethash(int L,int R) { return sum[R]-sum[L-1]*pow[R-L+1]; } inline void init() { int maxlen=0; com=-1;now=0; scanf("%d",&n); for(int k=1;k<=n;k++) { cnt[k]=0; scanf("%s",str+now+1); from[k]=now+1; int mark=1; for(int i=now+1;check(str[i]);i++) { str[++now]=str[i]; if(str[now]=='*')mark=0; else ++cnt[k]; } if(mark)com=k; to[k]=now; maxlen=max(maxlen,now); } if(nowlen<maxlen) for(int i=nowlen+1;i<=maxlen;i++) pow[i]=pow[i-1]*base; if(nowlen<maxlen)maxlen=nowlen; for(int i=1;i<=now;i++) sum[i]=sum[i-1]*base+str[i]; } inline int check(int x,int y) { int l=from[y],r=to[y]; while(from[x]<=to[x]&&l<=r&&str[from[x]]!='*') { if(str[from[x]]!=str[l])return 0; ++from[x];++l; } while(from[x]<=to[x]&&l<=r&&str[to[x]]!='*') { if(str[to[x]]!=str[r])return 0; --to[x];--r; } while(from[x]<=to[x]) { while(str[from[x]]=='*'&&from[x]<=to[x]) ++from[x]; if(from[x]>to[x])break; int st=from[x],ed; for(ed=st;str[ed]!='*';++ed); ULL val=gethash(st,ed-1); int len=ed-st; for(int i=l;i<=r+1;i++) { if(i+len-1>r)return 0; if(gethash(i,i+len-1)==val) { l=i+len; break; } } from[x]=ed; } return 1; } inline void work() { if(com!=-1) { ULL G=gethash(from[com],to[com]); for(int i=1;i<=n;i++) { if(cnt[i]>cnt[com]) { puts("N"); return; } if(cnt[i]==to[i]-from[i]+1) { if(gethash(from[i],to[i])!=G) { puts("N"); return; } }else { if(!check(i,com)) { puts("N"); return; } } } puts("Y"); return; }else { head=1;tail=n; for(int i=1;i<=n;i++) { prev[i]=i-1; next[i]=i+1; } while(head<=tail) { char c=0; for(int i=head;i<=tail;i=next[i]) { if(str[from[i]]=='*') { prev[next[i]]=prev[i]; next[prev[i]]=next[i]; if(i==head)head=next[i]; if(i==tail)tail=prev[i]; }else if(c==0)c=str[from[i]]; else if(c!=str[from[i]]) { puts("N"); return; } ++from[i]; } } head=1;tail=n; for(int i=1;i<=n;i++) { prev[i]=i-1; next[i]=i+1; } while(head<=tail) { char c=0; for(int i=head;i<=tail;i=next[i]) { if(str[to[i]]=='*') { prev[next[i]]=prev[i]; next[prev[i]]=next[i]; if(i==head)head=next[i]; if(i==tail)tail=prev[i]; }else if(c==0)c=str[to[i]]; else if(c!=str[to[i]]) { puts("N"); return; } --to[i]; } } puts("Y"); return; } } int main() { int T; *pow=1; scanf("%d",&T); while(T--) { init(); work(); } return 0; }
3575:道路阻塞
sol:基本的想法是这样的:如果一条在最短路上的边被删掉了,那么要用一些非最短路上的边来替换原来的最短路,一定是
1号点->最短路上的某个点->不在最短路上的一些点->最短路上的某个点->N号点。也就是说,一条边影响的一定是最短路上的某个区间。如果我们知道每条边影响的区间,那么我们就可以把所有边的代价(即新的路径上一定要包含这条边的代价)压到一个堆中。然后取堆的最小值即可。
想法一:一条边的新权值定义为:ds[fs[u[x]]]+w[x]+dt[ft[v[x]]] ds,dt表示1号点到它的最短路和他到N号点的最短路,fs,ft分别表示他在1~N的最短中最早什么时候离开最短路,然后用线段树区间最小维护即可。但是这个想法是错误的,它无法处理二元环的情况。。。
想法二:想法一的错误主要是对于最短路径上的区间求错。假定我们已经知道了经过前K条最短路边的最短路的情况。那么我们要求删掉第(K+1)条边的最短路,我们暴力更新每条边的区间,再把新的边权丢到堆里取最小值即可。
#include <cstdio> #include <cstring> #include <algorithm> #define inf 0x7f7f7f7f #define INF 21000000000000ll #define ls(x) ((x)<<1) #define rs(x) (((x)<<1)|1) using namespace std; struct E { int u,v,w,pre; E(int U=0,int V=0,int W=0,int P=0){u=U;v=V;pre=P;w=W;} }edge[200005]; int dis[100005],pos[200005],pe[200005]; int L,fs[100005]; int ft[100005],adj[100005],deg[100005]; int rt[200005],inr[200005],n,m; int pre[200005],suf[200005]; int p; struct Node { int x,dis; bool operator <(const Node &e)const { return dis>e.dis; } }q[500005]; #define CH getchar() inline void read(int &x) { x=0; char ch=CH; while(!(ch>='0'&&ch<='9'))ch=CH; while(ch>='0'&&ch<='9') { x=x*10+ch-'0'; ch=CH; } } int queue[1500005],vis[100005]; int occur[100005],id,stack[100005]; int val[100005],top; inline void spfa(int ds,int S,int lim) { memset(vis,0,sizeof(vis)); ++id;dis[S]=ds; int l=1,r=1; queue[1]=S;vis[S]=1; for(;l<=r;l++) { int u=queue[l]; for(int i=adj[u];i;i=edge[i].pre) if(!inr[i]) { int v=edge[i].v; if(pos[v]>lim) { if(occur[v]!=id) { occur[v]=id; stack[++top]=v; val[v]=dis[u]+edge[i].w+suf[pos[v]]; }else { val[v]=min(val[v],dis[u]+edge[i].w+suf[pos[v]]); } }else if(dis[u]+edge[i].w<dis[v]) { dis[v]=dis[u]+edge[i].w; if(vis[v])continue; queue[++r]=v; vis[v]=1; } } vis[u]=0; } for(;top;top--) { ++p; q[p].x=stack[top]; q[p].dis=val[stack[top]]; push_heap(q+1,q+p+1); } } inline void work() { memset(dis,0x7f,sizeof(dis)); dis[1]=0; for(int i=1;i<=L;i++) { inr[rt[i]]=1; spfa(pre[i],pe[i],i); inr[rt[i]]=0; while(p&&pos[q[1].x]<=i) { pop_heap(q+1,q+p+1); p--; } if(!p)puts("-1");else printf("%d\n",q[1].dis); } } int main() { read(n);read(m);read(L); for(int i=1;i<=m;i++) { int u,v,w; read(u);read(v);read(w); edge[i]=E(u,v,w,adj[u]); adj[u]=i; } pos[1]=1;pe[1]=1; for(int i=1;i<=L;i++) { read(rt[i]); pe[i+1]=edge[rt[i]].v; pos[edge[rt[i]].v]=i+1; } for(int i=1;i<=L;i++) pre[i+1]=pre[i]+edge[rt[i]].w; for(int i=L;i;i--) suf[i]=suf[i+1]+edge[rt[i]].w; work(); return 0; }
3576:江南乐
70分的SG函数是比较显然的
考虑100分算法。发现对于一个数字x floor(x/i)的取值只有sqrt(x)种。于是考虑分块。对于连续的一段floor(x/i)相等的数字只要考虑块内的第一个数和第二个数即可,具体如下:
设这个块中第一个数为first,floor(x/first)的值为P,x%first=Q.那么当分出first堆时,P堆石子的有first-Q个,(P+1)堆的有Q个。当分出(first+K)堆时,(P+1)堆石子的有(Q-P*K)堆,P堆石子的有((first+P)*K-Q)堆由于我们只关心P堆石子个数和(P+1)堆石子个数的奇偶性,那么当K=K0和K=K0-2时的情况是一样的,于是我们只要求K=0和K=1的情况即可。
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; int test,sg[100005],F,vis[100005]; int sG[100005]; void SG() { for(int i=0;i<F;i++)sg[i]=0; for(int i=F;i<=100000;i++) { for(int l=2,last=2;l<=i;l=last+1) { last=i/(i/l); int len=i/l,rem=i-len*l,REM=l-rem; vis[sg[(rem&1)*(len+1)]^sg[(REM&1)*len]]=i; int now=-1; if(rem>=len&&l+len+1-rem>=0) { if(now<0)now=0; now^=sg[((rem-len)&1)*(len+1)]^sg[((l+len+1-rem)&1)*len]; } if(now>=0)vis[now]=i; } int e=0; for(;;e++)if(vis[e]!=i)break; sg[i]=e; } } void Sg() { for(int i=0;i<F;i++)sG[i]=0; memset(vis,0,sizeof(vis)); for(int i=F;i<=1000;i++) { for(int j=2;j<=i;j++) { int p=i/j; int q=i%j; int x=j-q; int now=0; if(q&1)now^=sG[p+1]; if(x&1)now^=sG[p]; vis[now]=i; } int e=0; for(;;e++)if(vis[e]^i)break; sG[i]=e; } } int main() { scanf("%d%d",&test,&F); SG(); while(test--) { int N,M; scanf("%d",&N); int ans=0; for(int i=1;i<=N;i++)scanf("%d",&M),ans^=sg[M]; if(ans)printf("1");else printf("0"); if(test)printf(" ");else puts(""); } return 0; }
渣代码跑的慢。。。
2014年6月24日 13:01
简直神犇
2014年10月13日 13:24
Orz
2022年8月30日 01:42
The Jessore Division is one of the education board functioning under the Directorate of Primary Education (DPE), and nearly 30 lacks of students participate in the Primary School Certificate Exams across the country included Jessore division, we have expected a huge number of students appear in this PSC 2022 exams and they are waiting to check Prathomik Somaponi Result 2022 with total mark sheet of the student. PSC Result jessore Board This is a national level exams are conducted for class 5th grade students, and those subject-wise written tests are successfully completed between 17th to 24th November 2022 at all examination test centers across in the state under DPE, and the participants are waiting to check PSC Result 2022 BD with full mark sheet along with total GPA Grade point of Jessore division student.
2023年12月31日 22:12
Wow, wonderful blog layout! How long have you ever been blogging for? you made running a blog glance easy. The full look of your website is great, let alone the content! I really enjoy simply reading all of your weblogs. Simply wanted to inform you that you have people like me who appreciate your work. Definitely a great post. Hats off to you! The information that you have provided is very helpful. The information you have posted is very useful.
2024年1月03日 14:23
It truly is moreover a great write-up which i undoubtedly relished reviewing. It may not be specifically day-to-day which i build an opportunity to get whatever.
2024年1月03日 15:01
Deep House Cleaning A home is our safest place which feels like heaven where we want to spend our whole time with our beloved. We all want to welcome ourselves to a clean and organized house.You will also need to give a lot of effort to maintain and keep your house clean, but sometimes it
2024年1月03日 15:10
I am overwhelmed by your post with such a nice topic. Usually I visit your blogs and get updated through the information you include but today’s blog would be the most appreciable. Well done
2024年1月03日 15:24
Its a great pleasure reading your post.Its full of information I am looking for and I love to post a comment that "The content of your post is awesome" Great work
2024年1月03日 15:29
Selamat datang di situs kantorbola , agent judi slot gacor terbaik dengan RTP diatas 98% , segera daftar di situs kantor bola untuk mendapatkan bonus deposit harian 100 ribu dan bonus rollingan 1%.
2024年1月03日 15:46
I discovered your blog site site on the search engines and check several of your early posts. Always maintain up the very good operate. I recently additional increase Rss to my MSN News Reader. Looking for toward reading much more on your part later on!…
2024年1月03日 16:33
We Provide Today Bhutan Teer Result Live, Bhutan Teer Result, All Teer Result, Bhutan Teer Common Number Every Day 100% Working On
2024年1月03日 16:47
This post is genuinely incredible. I really like this post. It is remarkable among different posts that I see read in a long time. You shake for this alright post. I genuinely welcome it!
2024年1月03日 17:06
Thank you for sharing your expertise. Your knowledge on this subject is evident, and I learned a lot from reading your post. Looking forward to more enlightening content from you.
2024年1月03日 17:20
The extremely quite possibly a decent deal that in actual fact extremely savored perusing. Isn't really usual that have the option to check a given idea.
2024年1月03日 17:32
I admire this article for the well-researched content and excellent wording. I got so involved in this material that I couldn’t stop reading. I am impressed with your work and skill. Thank you so much.
2024年1月03日 17:39
Great post! I really enjoyed reading your article. The insights you provided are valuable, and I appreciate the effort you put into explaining the topic thoroughly.
2024年1月03日 17:59
The old way of doing things is to try to make your product 10x better than the competition. The new way of doing things is to make your experience 10x lighter than the competition's
2024年1月03日 18:06
EcoDailyLife is your ultimate destination for all things eco-friendly and sustainable living. Explore a wealth of informative articles, tips, and product reviews dedicated to helping you make environmentally conscious choices in your daily life. Whether you're looking to reduce your carbon footprint, adopt green practices at home, or stay updated on the latest eco-friendly trends, our website is your go-to resource. Join us on the journey towards a greener, more sustainable future. Start making a positive impact on the planet one click at a time with EcoDailyLife.
2024年1月03日 18:41
Female Escorts: offer a range of services to their clients, from companionship and intimacy to providing sexual gratification. These ladies come from different backgrounds and can cater to the specific needs of their customers.
2024年1月03日 18:49
I think this is a really good article. You make this information interesting and engaging. You give readers a lot to think about and I appreciate that kind of writing.
2024年1月03日 19:40
hey there, just wanted to tell you that the feed on your site is broken. I was trying to add it to my rss list but it couldn’t work. I had a similar issue on my blog, it wouldn’t work a week and then somehow it just worked! I guess these issues fix thereself sometimes, lol. but I thought to inform you. Take care!.
2024年1月03日 20:15
Great Share! Aw, this was a really nice post. In idea I would like to put in writing like this additionally – taking time and actual effort to make a very good article but what can I say I procrastinate alot and by no means seem to get something done.
2024年1月03日 20:26
It's similarly a fantastic write-up i usually certainly appreciated analyzing. It isn't always day-to-day i usually create the chance to find out something.
2024年1月03日 20:38
Admiring the time and effort you put into your website and in depth information you present. It’s good to come across a blog every once in a while that isn’t the same old rehashed information. Wonderful read! I’ve bookmarked your site and I’m adding your RSS feeds to my Google account.
2024年1月03日 20:59
This really is in addition a reasonably very good short article we surely much-loved inspecting. Not really daily which in turn take advantage of the possibilities to identify a product or service.
2024年1月03日 21:19
It truly is moreover a great write-up which i undoubtedly relished reviewing. It may not be specifically day-to-day which i build an opportunity to get whatever.
2024年1月03日 21:41
Its a great pleasure reading your post.Its full of information I am looking for and I love to post a comment that "The content of your post is awesome" Great work
2024年1月03日 21:48
That can feel totally proper. Each one of more compact factors have been developed by means of several document schooling. I enjoy the application form lots.
2024年1月03日 21:58
Howdy! Would you mind if I share your blog with my twitter group? There’s a lot of people that I think would really enjoy your content. Please let me know. Thanks
2024年1月03日 22:07
Howdy! Would you mind if I share your blog with my twitter group? There’s a lot of people that I think would really enjoy your content. Please let me know. Thanks
2024年1月03日 22:25
I am fascinated this informative article. There are so many things mentioned here I had never thought of before. You have made me realize there is more than one way to think about these things.
2024年1月03日 22:29
I discovered your blog site site on the search engines and check several of your early posts. Always maintain up the very good operate. I recently additional increase Rss to my MSN News Reader. Looking for toward reading much more on your part later on!…
2024年1月03日 22:50
The extremely quite possibly a decent deal that in actual fact extremely savored perusing. Isn't really usual that have the option to check a given idea.
2024年1月03日 23:00
I admire this article for the well-researched content and excellent wording. I got so involved in this material that I couldn’t stop reading. I am impressed with your work and skill. Thank you so much.
2024年1月03日 23:07
I couldn't agree more with your perspective. Your blog always delivers high-quality content, and this post is no exception. Keep up the fantastic work!
2024年1月03日 23:27
hey there, just wanted to tell you that the feed on your site is broken. I was trying to add it to my rss list but it couldn’t work. I had a similar issue on my blog, it wouldn’t work a week and then somehow it just worked! I guess these issues fix thereself sometimes, lol. but I thought to inform you. Take care!.
2024年1月03日 23:41
It's similarly a fantastic write-up i usually certainly appreciated analyzing. It isn't always day-to-day i usually create the chance to find out something.
2024年1月03日 23:42
I am fascinated this informative article. There are so many things mentioned here I had never thought of before. You have made me realize there is more than one way to think about these things.
2024年1月04日 00:00
Female Escorts: offer a range of services to their clients, from companionship and intimacy to providing sexual gratification. These ladies come from different backgrounds and can cater to the specific needs of their customers.
2024年1月20日 14:33
I learn some new stuff from it too, thanks for sharing your information.
2024年1月20日 15:35
Great post and amazing facts right here.Keep it up the wonderful work
2024年1月20日 16:05
definitely enjoying every little bit of it. It is a great website and nice share. I want to thank you. Good job! You guys do a great blog, and have some great contents. Keep up the good work
2024年1月20日 16:52
This is a wonderful post. I came to this site first time and I really like your post. Keep posting it. I love seeing websites that understand the value of providing a quality resource for free.I will wait for your post. Thank you.
2024年1月20日 17:08
This unique appears to be certainly superb. These types of really small truth is created utilizing wide selection associated with skills know-how. We prefer the concept a great deal
2024年1月20日 17:40
It was extremely helpful for me. I'm cheerful I discovered this blog. Much obliged to you for offering to us, I too dependably gain some new useful knowledge from your post.
2024年1月20日 18:18
Thank you for very usefull information
2024年1月20日 19:12
I am very enjoyed for this blog. Its an informative topic. It help me very much to solve some problems. Its opportunity are so fantastic and working style so speedy. The sims : Discover university is now available worldwide on PC! Your dorm room is ready for you, dom't be late for your first day of class
2024年1月20日 19:52
Very good points you wrote here..Great stuff…I think you’ve made some truly interesting points.Keep up the good work.
2024年1月20日 19:53
I’ve recently started a site, the information you provide on this site has helped me tremendously. Thanks for all of your time & work.
2024年1月20日 20:32
I want you to thank for your time of this wonderful read!!! I definately enjoy every little bit of it and I have you bookmarked to check out new stuff of your blog a must read blog!
2024年1月20日 21:03
I have read your article; it is very informative and helpful for me. I admire the valuable information you offer in your articles. Thanks for posting it.
2024年1月21日 13:27
You ought to basically fantastic not to mention solid advice, which means notice
2024年1月21日 13:59
You have done a great job on this article. It’s very readable and highly intelligent. You have even managed to make it understandable and easy to read. You have some real writing talent. Thank you.
2024年1月21日 15:45
Hello, I have browsed most of your posts. This post is probably where I got the most useful information for my research. Thanks for posting, maybe we can see more on this. Are you aware of any other websites on this subject.
2024年1月21日 16:30
"What’s up to every body, it’s my first pay a quick visit
of this webpage; this blog includes remarkable and really good stuff in support of visitors."
2024年1月26日 12:18
하노이 꼭 가봐야 할 베스트 업소 추천 안내 및 예약, 하노이 밤문화 에 대해서 정리해 드립니다. 하노이 가라오케, 하노이 마사지, 하노이 풍선바, 하노이 밤문화를 제대로 즐기시기 바랍니다. 하노이 밤문화 베스트 업소 요약 베스트 업소 추천 및 정리.
2024年1月26日 12:25
카지노사이트 바카라사이트 우리카지노 카지노는 바카라, 블랙잭, 룰렛 및 슬롯 등 다양한 게임을 즐기실 수 있는 공간입니다. 게임에서 승리하면 큰 환호와 함께 많은 당첨금을 받을 수 있고, 패배하면 아쉬움과 실망을 느끼게 됩니다.
2024年1月28日 13:49
Thanks for providing recent updates regarding the concern, I look forward to read more.
2024年1月28日 14:11
Thanks for writing such a good article, I stumbled onto your blog and read a few post. I like your style of writing...
2024年1月28日 14:29
Great article with excellent idea!Thank you for such a valuable article. I really appreciate for this great information.
2024年1月29日 11:34
No.1 먹튀검증 사이트, 먹튀사이트, 검증사이트, 토토사이트, 안전사이트, 메이저사이트, 안전놀이터 정보를 제공하고 있습니다. 먹튀해방으로 여러분들의 자산을 지켜 드리겠습니다. 먹튀검증 전문 커뮤니티 먹튀클린만 믿으세요!!
2024年1月29日 11:38
베트남 남성전용 커뮤니티❣️ 베트남 하이에나 에서 베트남 밤문화를 추천하여 드립니다. 베트남 가라오케, 베트남 VIP마사지, 베트남 이발관, 베트남 황제투어 남자라면 꼭 한번은 경험 해 봐야할 화끈한 밤문화로 모시겠습니다.
2024年6月03日 15:01
The tech-original mission is to help you better understand technology, and make better decisions in the fields of IT, Tech, and Crypto.
https://www.tech-original.com/
2024年6月08日 10:55
The tech-original mission is to help you better understand technology, and make better decisions in the fields of IT, Tech, and Crypto.
https://www.tech-original.com/